
Package ‘GA’
February 19, 2015

Type Package

Version 2.2

Date 2014-10-15

Title Genetic Algorithms

Description
An R package for optimization using genetic algorithms. The package provides a flexible general-
purpose set of tools for implementing genetic algorithms search in both the continuous and dis-
crete case, whether constrained or not. Users can easily define their own objective function de-
pending on the problem at hand. Several genetic operators are available and can be com-
bined to explore the best settings for the current task. Furthermore, users can define new ge-
netic operators and easily evaluate their performances. GAs can be run sequentially or in parallel.

Author Luca Scrucca <luca@stat.unipg.it>

Maintainer Luca Scrucca <luca@stat.unipg.it>

Depends R (>= 2.15), methods, foreach, iterators

Suggests parallel, doParallel

License GPL (>= 2)

ByteCompile true

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2014-10-15 13:20:01

R topics documented:
GA-package . 2
binary2decimal . 3
binary2gray . 4
ga . 5
ga-class . 9
gaControl . 10
gaMonitor . 12

1

2 GA-package

gaSummary . 13
ga_Crossover . 13
ga_Mutation . 15
ga_pmutation . 16
ga_Population . 17
ga_Selection . 18
jet.colors . 19
numericOrNA-class . 20
parNames-methods . 20
persp3D . 21
plot.ga-method . 22
summary.ga-method . 24

Index 25

GA-package Genetic Algorithms

Description

An R package for optimization using genetic algorithms. The package provides a flexible general-
purpose set of tools for implementing genetic algorithms search in both the continuous and discrete
case, whether constrained or not. Users can easily define their own objective function depending
on the problem at hand. Several genetic operators are available and can be combined to explore the
best settings for the current task. Furthermore, users can define new genetic operators and easily
evaluate their performances. GAs can be run sequentially or in parallel.

References

Scrucca L (2012). GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1-37, http://www.jstatsoft.org/v53/i04/.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

See Also

The main function ga, and the documentation accompanying the package.

http://www.jstatsoft.org/v53/i04/
../doc/index.html

binary2decimal 3

binary2decimal Binary encoding of decimal numbers and viceversa.

Description

Functions for computing binary to decimal conversion of numbers and viceversa.

Usage

decimal2binary(x, length)
binary2decimal(x)

Arguments

x input value.

length an optional value giving the length of binary string to return.

Details

decimal2binary converts a numerical value (which is forced to be an integer) to a binary repre-
sentation, i.e. a vector of 0s and 1s. For real numerical values see the example below.

binary2binary converts a binary value, i.e. a vector of 0s and 1s, to a decimal representation.

Author(s)

Luca Scrucca

See Also

binary2gray

Examples

for integer values
dval <- 12
(bval <- decimal2binary(dval))
binary2decimal(bval)

for real values
dval <- 12.456
use
(bval <- decimal2binary(dval*1000))
binary2decimal(bval)/1000

4 binary2gray

binary2gray Gray encoding for binary strings

Description

Functions for computing Gray encoding from/to binary strings.

Usage

binary2gray(x)
gray2binary(x)

Arguments

x the string to be evaluated

Details

Gray encoding allows to obtain binary strings not affected by the well-known Hamming cliff prob-
lem. With Gray encoding the number of bit differences between any two consecutive values is one,
whereas in binary strings this is not always true.

Author(s)

Luca Scrucca

See Also

binary2decimal

Examples

Consider a five-bit encoding of values 15 and 16 using the standard
binary coding
decimal2binary(15, 5)
decimal2binary(16, 5)
Moving from 15 to 16 (or viceversa) all five bits need to be changed,
but using Gray encoding the two binary strings differ by one bit.
binary2gray(decimal2binary(15, 5))
binary2gray(decimal2binary(16, 5))

ga 5

ga Genetic Algorithms

Description

Maximization of a fitness function using genetic algorithms.

Usage

ga(type = c("binary", "real-valued", "permutation"),
fitness, ...,
min, max, nBits,
population = gaControl(type)$population,
selection = gaControl(type)$selection,
crossover = gaControl(type)$crossover,
mutation = gaControl(type)$mutation,
popSize = 50,
pcrossover = 0.8,
pmutation = 0.1,
elitism = base::max(1, round(popSize*0.05)),
maxiter = 100,
run = maxiter,
maxfitness = Inf,
names = NULL,
suggestions = NULL,
keepBest = FALSE,
parallel = FALSE,
monitor = gaMonitor,
seed = NULL)

Arguments

type the type of genetic algorithm to be run depending on the nature of decision vari-
ables. Possible values are: "binary" for binary representations of decision vari-
ables; "real-valued" for optimization problems where the decision variables
are floating-point representations of real numbers; "permutation" for problems
that involves reordering of a list.

fitness the fitness function, any allowable R function which takes as input an individual
string representing a potential solution, and returns a numerical value describ-
ing its “fitness”.

... additional arguments to be passed to the fitness function. This allows to write
fitness functions that keep some variables fixed during the search.

min a vector of length equal to the decision variables providing the minimum of the
search space in case of real-valued or permutation encoded optimizations.

max a vector of length equal to the decision variables providing the maximum of the
search space in case of real-valued or permutation encoded optimizations.

6 ga

nBits a value specifying the number of bits to be used in binary encoded optimizations.

population an R function for randomly generating an initial population. See ga_Population
for available functions.

selection an R function performing selection, i.e., a function which generates a new pop-
ulation of individuals from the current population probabilistically according to
individual fitness. See ga_Selection for available functions.

crossover an R function performing crossover, i.e., a function which forms offsprings by
combining part of the genetic information from their parents. See ga_Crossover
for available functions.

mutation an R function performing mutation, i.e., a function which randomly alters the
values of some genes in a parent chromosome. See ga_Mutation for available
functions.

popSize the population size.

pcrossover the probability of crossover between pairs of chromosomes. Typically this is a
large value and by default is set to 0.8.

pmutation the probability of mutation in a parent chromosome. Usually mutation occurs
with a small probability, and by default is set to 0.1.

elitism the number of best fitness individuals to survive at each generation. By default
the top 5% individuals will survive at each iteration.

maxiter the maximum number of iterations to run before the GA search is halted.

run the number of consecutive generations without any improvement in the best
fitness value before the GA is stopped.

maxfitness the upper bound on the fitness function after that the GA search is interrupted.

names a vector of character strings providing the names of decision variables.

suggestions a matrix of solutions strings to be included in the initial population. If provided
the number of columns must match the number of decision variables.

keepBest a logical argument specifying if best solutions at each iteration should be saved
in a slot called bestSol. See ga-class.

parallel a logical argument specifying if parallel computing should be used (TRUE) or
not (FALSE, default) for evaluating the fitness function. This argument could
also be used to specify the number of cores to employ; by default, this is taken
from detectCores. Finally, the functionality of parallelization depends on
system OS: on Windows only ’snow’ type functionality is available, while on
Unix/Linux/Mac OSX both ’snow’ and ’multicore’ (default) functionalities are
available.

monitor an R function which takes as input the current state of the ga object and show the
evolution of the search. By default, the function gaMonitor prints the average
and best fitness values at each iteration. If set to plot these information are
plotted on a graphical device. Other functions can be written by the user and
supplied as argument.

seed an integer value containing the random number generator state. This argument
can be used to replicate the results of a GA search.

ga 7

Details

Genetic algorithms (GAs) are stochastic search algorithms inspired by the basic principles of bi-
ological evolution and natural selection. GAs simulate the evolution of living organisms, where
the fittest individuals dominate over the weaker ones, by mimicking the biological mechanisms of
evolution, such as selection, crossover and mutation.

The GA package is a collection of general purpose functions that provide a flexible set of tools for
applying a wide range of genetic algorithm methods.

The ga function enables the application of GAs to problems where the decision variables are en-
coded as "binary", "real-valued", or "permutation" strings.

Default genetic operators are set via gaControl. To retrieve the currently set operators:

gaControl("binary")

gaControl("real-valued")

gaControl("permutation")

Value

Returns an object of class ga-class. See ga-class for a description of available slots information.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

References

Back T, Fogel D, Michalewicz Z (2000). Evolutionary Computation 1: Basic Algorithms and
Operators. IOP Publishing Ltd., Bristol and Philadelphia.

Back T, Fogel D, Michalewicz Z (2000b). Evolutionary Computation 2: Advanced Algorithms and
Operators. IOP Publishing Ltd., Bristol and Philadelphia.

Coley D (1999). An Introduction to Genetic Algorithms for Scientists and Engineers. World Scien-
tific Pub. Co. Inc., Singapore.

Eiben A, Smith J (2003). Introduction to Evolutionary Computing. Springer-Verlag, Berlin Heidel-
berg.

Goldberg D (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley Professional, Boston, MA.

Haupt RL, Haupt SE (2004). Practical Genetic Algorithms. 2nd edition. John Wiley & Sons, New
York.

Scrucca L (2012). GA: A Package for Genetic Algorithms in R. Journal of Statistical Software,
53(4), 1-37, http://www.jstatsoft.org/v53/i04/.

Sivanandam S, Deepa S (2007). Introduction to Genetic Algorithms. Springer-Verlag, Berlin Hei-
delberg.

Yu X, Gen M (2010). Introduction to Evolutionary Algorithms. Springer-Verlag, Berlin Heidelberg.

http://www.jstatsoft.org/v53/i04/

8 ga

See Also

summary,ga-method, plot,ga-method, ga-class, ga_Population, ga_Selection, ga_Crossover,
ga_Mutation, gaControl.

Examples

1) one-dimensional function
f <- function(x) abs(x)+cos(x)
curve(f, -20, 20)

fitness <- function(x) -f(x)
GA <- ga(type = "real-valued", fitness = fitness, min = -20, max = 20)
summary(GA)
plot(GA)

curve(f, -20, 20)
abline(v = GA@solution, lty = 3)

2) one-dimensional function
f <- function(x) (x^2+x)*cos(x) # -10 < x < 10
curve(f, -10, 10)

write your own tracing function
monitor <- function(obj)
{

curve(f, -10, 10, main = paste("iteration =", obj@iter))
points(obj@population, obj@fitness, pch = 20, col = 2)
rug(obj@population, col = 2)
Sys.sleep(0.2)

}
Not run:
GA <- ga(type = "real-valued", fitness = f, min = -10, max = 10, monitor = monitor)

End(Not run)
or if you want to suppress the tracing
GA <- ga(type = "real-valued", fitness = f, min = -10, max = 10, monitor = NULL)
summary(GA)

monitor(GA)
abline(v = GA@solution, lty = 3)

3) two-dimensional Rastrigin function

Rastrigin <- function(x1, x2)
{

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

x1 <- x2 <- seq(-5.12, 5.12, by = 0.1)
f <- outer(x1, x2, Rastrigin)
persp3D(x1, x2, f, theta = 50, phi = 20)
filled.contour(x1, x2, f, color.palette = jet.colors)

ga-class 9

GA <- ga(type = "real-valued", fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 100)

summary(GA)
plot(GA)

Parallel GA
Simple example of an expensive fitness function obtained artificially by
introducing a pause statement.
Not run:
Rastrigin <- function(x1, x2)
{

Sys.sleep(0.1)
20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))

}

system.time(GA1 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345))

system.time(GA2 <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 100, monitor = FALSE,
seed = 12345, parallel = TRUE))

End(Not run)

ga-class Class "ga"

Description

An S4 class for genetic algorithms

Objects from the Class

Objects can be created by calls to the ga function.

Slots

call an object of class "call" representing the matched call;

type a character string specifying the type of genetic algorithm used;

min a vector providing for each decision variable the minimum of the search space in case of real-
valued or permutation encoded optimizations;

10 gaControl

max a vector providing for each decision variable the maximum of the search space in case of
real-valued or permutation encoded optimizations;

nBits a value specifying the number of bits to be used in binary encoded optimizations;

names a vector of character strings providing the names of decision variables (optional);

popSize the population size;

iter the actual (or final) iteration of GA search;

run the number of consecutive generations without any improvement in the best fitness value before
the GA is stopped;

maxiter the maximum number of iterations to run before the GA search is halted;

suggestions a matrix of user provided solutions and included in the initial population;

population the current (or final) population;

elitism the number of best fitness individuals to survive at each generation;

pcrossover the crossover probability;

pmutation the mutation probability;

fitness the values of fitness function for the current (or final) population;

summary a matrix of summary statistics for fitness values at each iteration (along the rows);

bestSol if keepBest = TRUE, the best solutions at each iteration;

fitnessValue the best fitness value at the final iteration;

solution the value(s) of the decision variables giving the best fitness at the final iteration.

Author(s)

Luca Scrucca

See Also

For examples of usage see ga.

gaControl A function for setting or retrieving defaults genetic operators

Description

Default settings for genetic operators used in the GA package.

Usage

gaControl(...)

Arguments

... no arguments, a single character vector, or a named list with components.

gaControl 11

Details

If the function is called with no arguments returns the current default settings, i.e., a list with the
following default components:

• "binary"

– population = "gabin_Population"

– selection = "gabin_lrSelection"

– crossover = "gabin_spCrossover"

– mutation = "gabin_raMutation"

• "real-valued"

– population = "gareal_Population"

– selection = "gareal_lsSelection"

– crossover = "gareal_laCrossover"

– mutation = "gareal_raMutation"

• "permutation"

– population = "gaperm_Population"

– selection = "gaperm_lrSelection"

– crossover = "gaperm_oxCrossover"

– mutation = "gaperm_simMutation"

• "eps" = the tolerance value used by the package functions. By default set at sqrt(.Machine$double.eps).

The function may be called with a single string specifying the name of the component. In this case
the function returns the current default settings.

To change the default values, a named component must be followed by a single value (in case of
"eps") or a list of component(s) specifying the name of the function for a genetic operator. See the
Examples section.

Value

If the argument list is empty the function returns the current list of values. If the argument list is not
empty, the returned list is invisible.

Note

The parameter values set via a call to this function will remain in effect for the rest of the session,
affecting the subsequent behaviour of the functions for which the given parameters are relevant.

Author(s)

Luca Scrucca

See Also

ga

12 gaMonitor

Examples

get and save defaults
defaultControl <- gaControl()
print(defaultControl)
get current defaults only for binary search
gaControl("binary")
set defaults for selection operator of binary search
gaControl("binary" = list(selection = "gabin_tourSelection"))
gaControl("binary")
set defaults for selection and crossover operators of binary search
gaControl("binary" = list(selection = "ga_rwSelection",

crossover = "gabin_uCrossover"))
gaControl("binary")
restore defaults
gaControl(defaultControl)
gaControl()

gaMonitor Monitor genetic algorithm evolution

Description

A function which prints the average and best fitness values at each iteration of GA search.

Usage

gaMonitor(object, digits = getOption("digits"), ...)

Arguments

object an object of class "ga", usually resulting from a call to function ga.

digits minimal number of significant digits.

... further arguments passed to or from other methods.

Value

This function prints a summary of GA steps on the console.

Author(s)

Luca Scrucca

See Also

ga

gaSummary 13

gaSummary Summarize genetic algorithm evolution

Description

A function which returns fitness summary statistics at each iteration of GA search.

Usage

gaSummary(x, ...)

Arguments

x a vector of fitness values for which summary statistics should be computed.

... further arguments passed to or from other methods.

Details

This function computes summary statistics for a vector of fitness values at current iteration of GA
search.

Value

A vector with the following values: (max, mean, median, min)

Author(s)

Luca Scrucca

See Also

ga

ga_Crossover Crossover operators in genetic algorithms

Description

Functions implementing crossover genetic operator.

14 ga_Crossover

Usage

ga_spCrossover(object, parents, ...)

gabin_spCrossover(object, parents, ...)
gabin_uCrossover(object, parents, ...)

gareal_spCrossover(object, parents, ...)
gareal_waCrossover(object, parents, ...)
gareal_laCrossover(object, parents, ...)
gareal_blxCrossover(object, parents, ...)

gaperm_cxCrossover(object, parents, ...)
gaperm_pmxCrossover(object, parents, ...)
gaperm_oxCrossover(object, parents, ...)
gaperm_pbxCrossover(object, parents, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

parents A two-rows matrix of values indexing the parents from the current population.

... Further arguments passed to or from other methods.

Value

Return a list with two elements:

children a matrix of dimension 2 times the number of decision variables containing the
generated offsprings;

fitness a vector of length 2 containing the fitness values for the offsprings. A value NA
is returned if an offspring is different (which is usually the case) from the two
parents.

Author(s)

Luca Scrucca

See Also

ga

ga_Mutation 15

ga_Mutation Mutation operators in genetic algorithms

Description

Functions implementing mutation genetic operator.

Usage

gabin_raMutation(object, parent, ...)

gareal_raMutation(object, parent, ...)
gareal_nraMutation(object, parent, ...)
gareal_rsMutation(object, parent, ...)

gaperm_simMutation(object, parent, ...)
gaperm_ismMutation(object, parent, ...)
gaperm_swMutation(object, parent, ...)
gaperm_dmMutation(object, parent, ...)
gaperm_scrMutation(object, parent, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

parent A vector of values for the parent from the current population where mutation
should occur.

... Further arguments passed to or from other methods.

Value

Return a vector of values containing the mutated string.

Author(s)

Luca Scrucca

See Also

ga

16 ga_pmutation

ga_pmutation Variable mutation probability in genetic algorithms

Description

A function which calculates the mutation probability for the current iteration. This enables to use
GAs with variable mutation rate (see examples).

Usage

ga_pmutation(object, p0 = 0.5, p = 0.01, T = round(object@maxiter/2), ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

p0 initial probability of mutation.

p limiting probability of mutation.

T maximum iteration after which it should converges to p.

... Further arguments passed to or from other methods.

Value

Return a numeric value in the range (0,1).

Author(s)

Luca Scrucca

See Also

ga, ga_Mutation

Examples

Not run:
Rastrigin <- function(x1, x2)
{

20 + x1^2 + x2^2 - 10*(cos(2*pi*x1) + cos(2*pi*x2))
}

GA <- ga(type = "real-valued",
fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 500, run = 100,
pmutation = ga_pmutation)

plot(GA)

GA <- ga(type = "real-valued",

ga_Population 17

fitness = function(x) -Rastrigin(x[1], x[2]),
min = c(-5.12, -5.12), max = c(5.12, 5.12),
popSize = 50, maxiter = 500, run = 100,
pmutation = function(...) ga_pmutation(..., p0 = 0.1))

plot(GA)

End(Not run)

ga_Population Population initialization in genetic algorithms

Description

Functions for creating a random initial population to be used in genetic algorithms.

Usage

gabin_Population(object, ...)

gareal_Population(object, ...)

gaperm_Population(object, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

... Further arguments passed to or from other methods.

Details

gabin_Population generates a random population of object@nBits binary values;

gareal_Population generates a random (uniform) population of real values in the range [object@min,
object@max];

gaperm_Population generates a random (uniform) population of integer values in the range [object@min,
object@max].

Value

Return a matrix of dimension object@popSize times the number of decision variables.

Author(s)

Luca Scrucca

See Also

ga

18 ga_Selection

ga_Selection Selection operators in genetic algorithms

Description

Functions implementing selection genetic operator.

Usage

ga_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

ga_nlrSelection(object, q = 0.25, ...)
ga_rwSelection(object, ...)
ga_tourSelection(object, k = 3, ...)

gabin_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

gabin_nlrSelection(object, q = 0.25, ...)
gabin_rwSelection(object, ...)
gabin_tourSelection(object, k = 3, ...)

gareal_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

gareal_nlrSelection(object, q = 0.25, ...)
gareal_rwSelection(object, ...)
gareal_tourSelection(object, k = 3, ...)
gareal_lsSelection(object, ...)
gareal_sigmaSelection(object, ...)

gaperm_lrSelection(object, r = 2/(object@popSize * (object@popSize - 1)),
q = 2/object@popSize, ...)

gaperm_nlrSelection(object, q = 0.25, ...)
gaperm_rwSelection(object, ...)
gaperm_tourSelection(object, k = 3, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

r A tuning parameter for the specific selection operator.

q A tuning parameter for the specific selection operator.

k A tuning parameter for the specific selection operator.

... Further arguments passed to or from other methods.

jet.colors 19

Value

Return a list with two elements:

population a matrix of dimension object@popSize times the number of decision variables
containing the selected individuals or strings;

fitness a vector of length object@popSize containing the fitness values for the selected
individuals.

Author(s)

Luca Scrucca

See Also

ga

jet.colors Jet Colors Palette

Description

Create a vector of n colors beginning with dark blue, ranging through shades of blue, cyan, green,
yellow and red, and ending with dark red.

Usage

jet.colors(n)

Arguments

n a numerical value specifying the number of colors in the palette.

Details

This function creates a palette of colors beginning with dark blue, ranging through shades of blue,
cyan, green, yellow and red, and ending with dark red.

Value

Returns vector of n color names.

See Also

colors.

20 parNames-methods

Examples

jet.colors(5)

palette(jet.colors(21))
pie(rep(1,21), col = 1:21)

numericOrNA-class Virtual Class "numericOrNA" - Simple Class for subassignment Val-
ues

Description

The class "numericOrNA" is a simple class union (setClassUnion) of "numeric" and "logical".

Objects from the Class

Since it is a virtual Class, no objects may be created from it.

Examples

showClass("numericOrNA")

parNames-methods Parameters or decision variables names from an object of class
ga-class.

Description

A method for obtaining the names of parameters or decision variables from an object of class
ga-class.

Usage

parNames(object, ...)
S4 method for signature 'ga'
parNames(object, ...)

Arguments

object An object of class "ga", usually resulting from a call to function ga.

... Further arguments, currently not used.

Value

A list of character values providing the names of parameters or decision variables.

persp3D 21

Author(s)

Luca Scrucca

See Also

ga

persp3D Perspective plot with colour levels

Description

This function draws a perspective plot of a surface with different levels in different colors.

Usage

persp3D(x, y, z, theta = 30, phi = 20, d = 5, expand = 2/3,
xlim = range(x, finite = TRUE), ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE), levels = pretty(zlim, nlevels),
nlevels = 20, color.palette = jet.colors, border = NA,
ticktype = "detailed", xlab = NULL, ylab = NULL, zlab = NULL,
...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively.

z a matrix containing the values to be plotted (NAs are allowed).

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

d a value which can be used to vary the strength of the perspective transformation.

expand a expansion factor applied to the z coordinates.
xlim, ylim, zlim

x-, y- and z-limits for the axes.

levels a vector of values specifying the levels to be used for plotting the surface with
different colors.

nlevels a value specifying the numbe of levels to be used for plotting. This value is used
if levels argument is not specified.

color.palette the color palette used for plotting.

border the color of the line drawn around the surface facets. By default is set to NA so
no borders are drawn.

ticktype a character specifying the type of axes tickmarks. By default "detailed" ticks
are drawn.

22 plot.ga-method

xlab, ylab, zlab

character strings specifying the titles for the axes.

... Further arguments passed to the function persp.

Details

This function enhances the default perspective plot for drawing 3-dimensional surfaces.

Value

Return a list with the following elements:

persp the viewing transformation matrix (see link{persp});

levels a vector of values giving the levels used for plotting the surface;

colors a vector of strings giving the color used for plotting the surface.

Author(s)

Luca Scrucca

See Also

link{persp}

Examples

y <- x <- seq(-10, 10, length=60)
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
persp3D(x, y, z, theta = 30, phi = 30, expand = 0.5)
persp3D(x, y, z, color.palette = heat.colors, phi = 30, theta = 225,

box = TRUE, border = NA, shade = .4)

x1 = seq(-3,3,length=50)
x2 = seq(-3,3,length=50)
y = function(x1, x2) sin(x1)+cos(x2)
persp3D(x1, x2, outer(x1,x2,y), zlab="y", theta = 150, phi = 20, expand = 0.6)

plot.ga-method Plot of Genetic Algorithm search path

Description

The plot method for ga-class objects gives a plot of best and average fitness values found during
the iterations of the GA search.

plot.ga-method 23

Usage

S4 method for signature 'ga'
plot(x, y, ylim, cex.points = 0.7,

col = c("green3", "dodgerblue3", adjustcolor("green3", alpha.f = 0.1)),
pch = c(16, 1), lty = c(1,2), grid = graphics:::grid, ...)

Arguments

x An object of class "ga".

y Not used.

ylim A vector of two values specifying the limits on the y-axis.

cex.points The magnification to be used for points.

col The colors to be used for best and average fitness values.

pch The type of points to be used for best and average fitness values.

lty The type of lines to be used for best and average fitness values.

grid A function for grid drawing of NULL to avoid drawing one.

... Further arguments, currently not used.

Details

Plot best and average fitness values at each iteration of GA search.

Value

The method invisibly return a list with the following components:

iter a vector of values for each interation.

fitnessBest the best value of fitness function at each iteration.

fitnessMean the mean value of fitness function at each iteration.

Author(s)

Luca Scrucca

See Also

ga, ga-class.

24 summary.ga-method

summary.ga-method Summary for Genetic Algorithms

Description

Summary method for class "GA".

Usage

S4 method for signature 'ga'
summary(object, ...)

S3 method for class 'summary.ga'
print(x, digits = getOption("digits"), ...)

Arguments

object an object of class ga-class.

x an object of class summary.ga.

digits number of significant digits.

... further arguments passed to or from other methods.

Value

The summary function returns an object of class summary.ga which can be printed by the corre-
sponding print method. The function also returns invisibly a list with the information from the
genetic algorithm search.

Author(s)

Luca Scrucca

See Also

ga

Examples

f <- function(x) abs(x)+cos(x)
GA <- ga(type = "real-valued", fitness = function(x) -f(x), min = -20, max = 20)
out <- summary(GA)
print(out)
str(out)

Index

∗Topic classes
ga-class, 9
numericOrNA-class, 20

∗Topic hplot
jet.colors, 19
persp3D, 21
plot.ga-method, 22

∗Topic methods
parNames-methods, 20
plot.ga-method, 22

∗Topic optimize
ga, 5
ga-class, 9
summary.ga-method, 24

∗Topic package
GA-package, 2

binary2decimal, 3, 4
binary2gray, 3, 4

colors, 19

decimal2binary (binary2decimal), 3
detectCores, 6

GA (GA-package), 2
ga, 2, 5, 9–21, 23, 24
ga-class, 9, 20
GA-package, 2
ga_Crossover, 6, 8, 13
ga_lrSelection (ga_Selection), 18
ga_Mutation, 6, 8, 15, 16
ga_nlrSelection (ga_Selection), 18
ga_pmutation, 16
ga_Population, 6, 8, 17
ga_rwSelection (ga_Selection), 18
ga_Selection, 6, 8, 18
ga_spCrossover (ga_Crossover), 13
ga_tourSelection (ga_Selection), 18
gabin_lrSelection (ga_Selection), 18

gabin_nlrSelection (ga_Selection), 18
gabin_Population (ga_Population), 17
gabin_raMutation (ga_Mutation), 15
gabin_rwSelection (ga_Selection), 18
gabin_spCrossover (ga_Crossover), 13
gabin_tourSelection (ga_Selection), 18
gabin_uCrossover (ga_Crossover), 13
gaControl, 7, 8, 10
gaMonitor, 6, 12
gaperm_cxCrossover (ga_Crossover), 13
gaperm_dmMutation (ga_Mutation), 15
gaperm_ismMutation (ga_Mutation), 15
gaperm_lrSelection (ga_Selection), 18
gaperm_nlrSelection (ga_Selection), 18
gaperm_oxCrossover (ga_Crossover), 13
gaperm_pbxCrossover (ga_Crossover), 13
gaperm_pmxCrossover (ga_Crossover), 13
gaperm_Population (ga_Population), 17
gaperm_rwSelection (ga_Selection), 18
gaperm_scrMutation (ga_Mutation), 15
gaperm_simMutation (ga_Mutation), 15
gaperm_swMutation (ga_Mutation), 15
gaperm_tourSelection (ga_Selection), 18
gareal_blxCrossover (ga_Crossover), 13
gareal_laCrossover (ga_Crossover), 13
gareal_lrSelection (ga_Selection), 18
gareal_lsSelection (ga_Selection), 18
gareal_nlrSelection (ga_Selection), 18
gareal_nraMutation (ga_Mutation), 15
gareal_Population (ga_Population), 17
gareal_raMutation (ga_Mutation), 15
gareal_rsMutation (ga_Mutation), 15
gareal_rwSelection (ga_Selection), 18
gareal_sigmaSelection (ga_Selection), 18
gareal_spCrossover (ga_Crossover), 13
gareal_tourSelection (ga_Selection), 18
gareal_waCrossover (ga_Crossover), 13
gaSummary, 13
gray2binary (binary2gray), 4

25

26 INDEX

jet.colors, 19

numericOrNA-class, 20

parNames (parNames-methods), 20
parNames,ga-method (parNames-methods),

20
parNames-methods, 20
persp, 22
persp3D, 21
plot,ga-method (plot.ga-method), 22
plot.ga (plot.ga-method), 22
plot.ga-method, 22
print,ga-method (ga), 5
print.summary.ga (summary.ga-method), 24

setClassUnion, 20
show,ga-method (ga), 5
startParallel (ga), 5
summary,ga-method (summary.ga-method),

24
summary.ga (summary.ga-method), 24
summary.ga-method, 24

	GA-package
	binary2decimal
	binary2gray
	ga
	ga-class
	gaControl
	gaMonitor
	gaSummary
	ga_Crossover
	ga_Mutation
	ga_pmutation
	ga_Population
	ga_Selection
	jet.colors
	numericOrNA-class
	parNames-methods
	persp3D
	plot.ga-method
	summary.ga-method
	Index

